Published in

American Chemical Society, Organometallics, 10(21), p. 2076-2087, 2002

DOI: 10.1021/om0200196

Links

Tools

Export citation

Search in Google Scholar

Hydrosilylation with bis(alkynyl)(1,5-cyclooctadiene)platinum catalysts : a density functional study of the initial activation

Journal article published in 2002 by Mavinahalli N. Jagadeesh, Walter Thiel ORCID, Jutta Köhler, Armin Fehn
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

At elevated temperatures bis(alkynyl)(1,5- cyclooctadiene)platinum complexes catalyze the cross-linking of polyorganosiloxanes containing Si-H and vinyl groups. Density functional calculations with medium-size basis sets and effective core potentials are reported for reactions that may activate these precatalysts for hydrosilylation. For a model system consisting of the bis(ethynyl) complex, trimethylsilane, and ethylene, the computations provide two plausible pathways for gaining access to the Chalk-Harrod cycle. The first one involves a sequence of four oxidative additions and reductive eliminations, while the second one requires a reductive coupling that is induced by olefin coordination. In both cases, the initial step is rate-determining, with a computed barrier of 27 kcal/mol. Experiments for polysiloxane systems of industrial interest favor the first pathway and yield barriers of 25-30 kcal/mol. Substituents in the alkynyl groups affect the measured barriers and the barriers computed for the rate- determining initial step of the first pathway in a qualitatively similar manner. We propose that the activation of the precatalysts is initiated by oxidative addition of Si-H.