Published in

Nature Research, Scientific Reports, 1(7), 2017

DOI: 10.1038/s41598-017-14130-4

Links

Tools

Export citation

Search in Google Scholar

Pannexin1 links lymphatic function to lipid metabolism and atherosclerosis

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractExtracellular ATP is a central signaling molecule in inflammatory responses. Pannexin1 (Panx1) channels release ATP in a controlled manner and have been implicated in various inflammatory pathologies, but their role in atherogenesis remains elusive. Using atherosclerosis-susceptible mouse models with ubiquitous deletion of Panx1 (Panx1 −/− Apoe −/− ) or with Cre recombinase-mediated deletion of Panx1 in endothelial cells and monocytes (Tie2-Cre Tg Panx1 fl/fl Apoe −/− ; Panx1 del Apoe −/− ), we identified a novel role for Panx1 in the lymphatic vasculature. Atherosclerotic lesion development in response to high-cholesterol diet was enhanced in Panx1 del Apoe −/− mice, pointing to an atheroprotective role for Panx1 in endothelial and/or monocytic cells. Unexpectedly, atherogenesis was not changed in mice with ubiquitous Panx1 deletion, but Panx1 −/− Apoe −/− mice displayed reduced body weight, serum cholesterol, triglycerides and free fatty acids, suggesting altered lipid metabolism in these Panx1-deficient mice. Mechanistically, Panx1 −/− Apoe −/− mice showed impairment of lymphatic vessel function with decreased drainage of interstitial fluids and reduced dietary fat absorption. Thus, the detrimental effect of Panx1 deletion in endothelial and/or monocytic cells during atherogenesis is counterbalanced by an opposite effect resulting from impaired lymphatic function in ubiquitous Panx1-deficient mice. Collectively, our findings unveil a pivotal role of Panx1 in linking lymphatic function to lipid metabolism and atherosclerotic plaque development.