Dissemin is shutting down on January 1st, 2025

Published in

Nature Research, Scientific Reports, 1(7), 2017

DOI: 10.1038/s41598-017-16447-6

Links

Tools

Export citation

Search in Google Scholar

Nanoparticle core stability and surface functionalization drive the mTOR signaling pathway in hepatocellular cell lines

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractSpecifically designed and functionalized nanoparticles hold great promise for biomedical applications. Yet, the applicability of nanoparticles is critically predetermined by their surface functionalization and biodegradability. Here we demonstrate that amino-functionalized polystyrene nanoparticles (PS-NH2), but not amino- or hydroxyl-functionalized silica particles, trigger cell death in hepatocellular carcinoma Huh7 cells. Importantly, biodegradability of nanoparticles plays a crucial role in regulation of essential cellular processes. Thus, biodegradable silica nanoparticles having the same shape, size and surface functionalization showed opposite cellular effects in comparison with similar polystyrene nanoparticles. At the molecular level, PS-NH2 obstruct and amino-functionalized silica nanoparticles (Si-NH2) activate the mTOR signalling in Huh7 and HepG2 cells. PS-NH2 induced time-dependent lysosomal destabilization associated with damage of the mitochondrial membrane. Solely in PS-NH2-treated cells, permeabilization of lysosomes preceded cell death. Contrary, Si-NH2 nanoparticles enhanced proliferation of HuH7 and HepG2 cells. Our findings demonstrate complex cellular responses to functionalized nanoparticles and suggest that nanoparticles can be used to control activation of mTOR signaling with subsequent influence on proliferation and viability of HuH7 cells. The data provide fundamental knowledge which could help in developing safe and efficient nano-therapeutics.