Published in

Oxford University Press, Tree Physiology, 2(39), p. 312-319, 2018

DOI: 10.1093/treephys/tpy056

Links

Tools

Export citation

Search in Google Scholar

Environmental conditions, not sugar export efficiency, limit the length of conifer leaves

Journal article published in 2018 by Xiaoyu Han, Robert Turgeon, Alexander Schulz, Johannes Liesche ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract Most conifer species have needle-shaped leaves that are only a few centimeters long. In general, variation in leaf size has been associated with environmental factors, such as cold or drought stress. However, it has recently been proposed that sugar export efficiency is the limiting factor for conifer needle length, based on the results obtained using a mathematical model of phloem transport. Here, phloem transport rates in long conifer needles were experimentally determined to test if the mathematical model accurately represents phloem transport. The validity of the model’s assumptions was tested by anatomical analyses and sugar quantification. Furthermore, various environmental and physiological factors were tested for their correlation with needle length. The results indicate that needle length is not limited by sugar transport efficiency, but, instead, by winter temperatures and light availability. The identification of factors that influence needle size is instrumental for using this trait as a variable in breeding programs.