Published in

American Meteorological Society, Journal of Physical Oceanography, 4(47), p. 737-754, 2017

DOI: 10.1175/jpo-d-16-0215.1

Links

Tools

Export citation

Search in Google Scholar

Lateral Eddy Mixing in the Subtropical Salinity Maxima of the Global Ocean

Journal article published in 2017 by Julius Busecke ORCID, Ryan P. Abernathey, Arnold L. Gordon
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

AbstractA suite of observationally driven model experiments is used to investigate the contribution of near-surface lateral eddy mixing to the subtropical surface salinity maxima in the global ocean. Surface fields of salinity are treated as a passive tracer and stirred by surface velocities derived from altimetry, leading to irreversible water-mass transformation. In the absence of surface forcing and vertical processes, the transformation rate can be directly related to the integrated diffusion across tracer contours, which is determined by the observed velocities. The destruction rates of the salinity maxima by lateral mixing can be compared to the production rates by surface forcing, which act to strengthen the maxima. The ratio of destruction by eddy mixing in the surface layer versus the surface forcing exhibits regional differences in the mean—from 10% in the South Pacific to up to 25% in the south Indian. Furthermore, the regional basins show seasonal and interannual variability in eddy mixing. The dominant mechanism for this temporal variability varies regionally. Most notably, the North Pacific shows a large sensitivity to the background salinity fields and a weak sensitivity to the velocity fields, while the North Atlantic exhibits the opposite behavior. The different mechanism for temporal variability could have impacts on the manifestation of a changing hydrological cycle in the sea surface salinity (SSS) field specifically in the North Pacific. The authors find evidence for large-scale interannual changes of eddy diffusivity and transformation rate in several ocean basins that could be related to large-scale climate forcing.