Published in

Springer Nature [academic journals on nature.com], Translational Psychiatry, 1(8), 2018

DOI: 10.1038/s41398-018-0145-3

Links

Tools

Export citation

Search in Google Scholar

Inferior olive CRF plays a role in motor performance under challenging conditions

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractA well-coordinated stress response is pivotal for an organisms’ survival. Corticotropin-releasing factor (CRF) is an essential component of the emotional and neuroendocrine stress response, however its role in cerebellar functions is poorly understood. Here, we explore the role of CRF in the inferior olive (IO) nucleus, which is a major source of input to the cerebellum. Using a CRF reporter line, in situ hybridization and immunohistochemistry, we demonstrate very high levels of the CRF neuropeptide expression throughout the IO sub-regions. By generating and characterizing IO-specific CRF knockdown and partial IO-CRF knockout, we demonstrate that reduction in IO-CRF levels is sufficient to induce motor deficiency under challenging conditions, irrespective of basal locomotion or anxiety-like behavior. Furthermore, we show that chronic social defeat stress induces a persistent decrease in IO-CRF levels, and that IO-CRF mRNA is upregulated shortly following stressful situations that demand a complex motor response. Taken together our results indicate a role for IO-CRF in challenge-induced motor responses.