Published in

CSIRO Publishing, Marine & Freshwater Research, 6(69), p. 883, 2018

DOI: 10.1071/mf17255

Links

Tools

Export citation

Search in Google Scholar

Living with an engineer: fish metacommunities in dynamic patchy environments

Journal article published in 2018 by Aneta Bylak ORCID, Krzysztof Kukuła
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Different environmental preferences and dispersal abilities allow fish to coexist in local communities. In the present study we analysed the effects of engineering species on the community structure based on the example of the European beaver (Castor fiber) and mountainous European stream fish. We hypothesised that the creation of beaver impoundments increases environmental heterogeneity and causes a strong spatial and temporal variation in fish species composition and size structure. Finally, we placed these results in the context of the metacommunity theory. Our research was conducted over a large spatial scale, and over a relatively long (5-year) temporal scale. Data analysis revealed strong environmental gradients associated with stream size and increased environmental heterogeneity associated with the creation of beaver impoundments. The results also indicated strong spatial and temporal variation in fish species composition and size structure associated with this environmental heterogeneity. Although local communities changed over time, the main metacommunity characteristics remained constant. Fish must move and follow environmental changes for their populations and communities to persist in streams inhabited by beavers. Gaining a deeper understanding of the effects of the engineering species on fish community structure may help inform management and the conservation of stream ecosystems.