Dissemin is shutting down on January 1st, 2025

Published in

American Meteorological Society, Journal of the Atmospheric Sciences, 6(75), p. 1909-1932, 2018

DOI: 10.1175/jas-d-17-0284.1

Links

Tools

Export citation

Search in Google Scholar

How Do Environmental Conditions Influence Vertical Buoyancy Structure and Shallow-to-Deep Convection Transition across Different Climate Regimes?

Journal article published in 2018 by Yizhou Zhuang ORCID, Rong Fu ORCID, Hongqing Wang
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

Abstract We developed an entraining parcel approach that partitions parcel buoyancy into contributions from different processes (e.g., adiabatic cooling, condensation, freezing, and entrainment). Applying this method to research-quality radiosonde profiles provided by the Atmospheric Radiation Measurement (ARM) program at six sites, we evaluated how atmospheric thermodynamic conditions and entrainment influence various physical processes that determine the vertical buoyancy structure across different climate regimes as represented by these sites. The differences of morning buoyancy profiles between the deep convection (DC)/transition cases and shallow convection (SC)/nontransition cases were used to assess preconditions important for shallow-to-deep convection transition. Our results show that for continental sites such as the U.S. Southern Great Plains (SGP) and west-central Africa, surface conditions alone are enough to account for the buoyancy difference between DC and SC cases, although entrainment further enhances the buoyancy difference at SGP. For oceanic sites in the tropical west Pacific, humidity dilution in the lower to middle free troposphere (~1–6 km) and temperature mixing in the middle to upper troposphere (>4 km) have the most important influences on the buoyancy difference between DC and SC cases. For the humid central Amazon region, entrainment in both the boundary layer and the lower free troposphere (~0–4 km) have significant contributions to the buoyancy difference; the upper-tropospheric influence seems unimportant. In addition, the integral of the condensation term, which represents the parcel’s ability to transform available water vapor into heat through condensation, provides a better discrimination between DC and SC cases than the integral of buoyancy or the convective available potential energy (CAPE).