Dissemin is shutting down on January 1st, 2025

Published in

Wiley, Traffic, 12(14), p. 1272-1289, 2013

DOI: 10.1111/tra.12119

Links

Tools

Export citation

Search in Google Scholar

Building a Better Dynasore: The Dyngo Compounds Potently Inhibit Dynamin and Endocytosis

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Dynamin GTPase activity increases when it oligomerizes either into helices in the presence of lipid templates or into rings in the presence of SH3 domain proteins. Dynasore is a dynamin inhibitor of moderate potency (IC50 ˜ 15 μM in vitro). We show that dynasore binds stoichiometrically to detergents used for in vitro drug screening, drastically reducing its potency (IC50 = 479 μM) and research tool utility. We synthesized a focused set of dihydroxyl and trihydroxyl dynasore analogs called the Dyngo™ compounds, five of which had improved potency, reduced detergent binding and reduced cytotoxicity, conferred by changes in the position and/or number of hydroxyl substituents. The Dyngo compound 4a was the most potent compound, exhibiting a 37‐fold improvement in potency over dynasore for liposome‐stimulated helical dynamin activity. In contrast, while dynasore about equally inhibited dynamin assembled in its helical or ring states, 4a and 6a exhibited >36‐fold reduced activity against rings, suggesting that they can discriminate between helical or ring oligomerization states. 4a and 6a inhibited dynamin‐dependent endocytosis of transferrin in multiple cell types (IC50 of 5.7 and 5.8 μM, respectively), at least sixfold more potently than dynasore, but had no effect on dynamin‐independent endocytosis of cholera toxin. 4a also reduced synaptic vesicle endocytosis and activity‐dependent bulk endocytosis in cultured neurons and synaptosomes. Overall, 4a and 6a are improved and versatile helical dynamin and endocytosis inhibitors in terms of potency, non‐specific binding and cytotoxicity. The data further suggest that the ring oligomerization state of dynamin is not required for clathrin‐mediated endocytosis.