Dissemin is shutting down on January 1st, 2025

Published in

Elsevier, Molecular Phylogenetics and Evolution, 3(54), p. 763-772, 2010

DOI: 10.1016/j.ympev.2009.11.019

Links

Tools

Export citation

Search in Google Scholar

Genome-based phylogenetic analysis of Streptomyces and its relatives

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Motivation: Streptomyces is one of the best-studied genera of the order Actinomycetales due to its great importance in medical science, ecology and the biotechnology industry. A comprehensive, detailed and robust phylogeny of Streptomyces and its relatives is needed for understanding how this group emerged and maintained such a vast diversity throughout evolution and how soil-living mycelial forms (e.g., Streptomyces s. str.) are related to parasitic, unicellular pathogens (e.g., Mycobacterium tuberculosis) or marine species (e.g., Salinispora tropica). The most important application area of such a phylogenetic analysis will be in the comparative re-annotation of genome sequences and the reconstruction of Streptomyces metabolic networks for biotechnology. Methods: Classical 16S-rRNA-based phylogenetic reconstruction does not guarantee to produce well-resolved robust trees that reflect the overall relationship between bacterial species with widespread horizontal gene transfer. In our study we therefore combine three whole genome-based phylogenies with eight different, highly informative single-gene phylogenies to determine a new robust consensus tree of 45 Actinomycetales species with completely sequenced genomes. Results: None of the individual methods achieved a resolved phylogeny of Streptomyces and its relatives. Single-gene approaches failed to yield a detailed phylogeny; even though the single trees are in good agreement among each other, they show very low resolution of inner branches. The three whole genome-based methods improve resolution considerably. Only by combining the phylogenies from single gene-based and genome-based approaches we finally obtained a consensus tree with well-resolved branches for the entire set of Actinomycetales species. This phylogenetic information is stable and informative enough for application to the system-wide comparative modeling of bacterial physiology. ?? 2009 Elsevier Inc. All rights reserved.