Published in

Nature Research, Scientific Reports, 1(8), 2018

DOI: 10.1038/s41598-018-26595-y

Links

Tools

Export citation

Search in Google Scholar

A surface topography analysis of the curling stone curl mechanism

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractThe curling motion of the curling stone on ice is well-known: if a small clockwise rotational velocity is imposed to the stone when it is released, in addition to the linear propagation velocity, the stone will curl to the right. A similar curl to the left is obtained by counter-clockwise rotation. This effect is widely used in the game to reach spots behind the already thrown stones, and the rotation also causes the stone to propagate in a more predictable fashion. Here, we report on novel experimental results which support one of the proposed theories to account for the curling motion of the stone, known as the “scratch-guiding theory”. By directly scanning the ice surface with a white light interferometer before and after each slide, we observed cross-scratches caused by the leading and trailing parts of the circular contact band of the linearly moving and rotating stone. By analyzing these scratches and a typical curling stone trajectory, we show that during most of the slide, the transverse force responsible for the sideways displacement of the stone is linearly proportional to the angle between these cross-scratches.