Published in

American Physiological Society, American Journal of Physiology - Regulatory, Integrative and Comparative Physiology, 2(311), p. R426-R439, 2016

DOI: 10.1152/ajpregu.00112.2016

Links

Tools

Export citation

Search in Google Scholar

Chronic intermittent hypoxia accelerates coronary microcirculatory dysfunction in insulin-resistant Goto-Kakizaki rats

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Chronic intermittent hypoxia (IH) induces oxidative stress and inflammation, which impair vascular endothelial function. Long-term insulin resistance also leads to endothelial dysfunction. We determined, in vivo, whether the effects of chronic IH and insulin resistance on endothelial function augment each other. Male 12-wk-old Goto-Kakizaki (GK) and Wistar control rats were subjected to normoxia or chronic IH (90-s N2, 5% O2 at nadir, 90-s air, 20 cycles/h, 8 h/day) for 4 wk. Coronary endothelial function was assessed using microangiography with synchrotron radiation. Imaging was performed at baseline, during infusion of acetylcholine (ACh, 5 μg·kg−1·min−1) and then sodium nitroprusside (SNP, 5 μg·kg−1·min−1), after blockade of both nitric oxide (NO) synthase (NOS) with Nω-nitro-l-arginine methyl ester (l-NAME, 50 mg/kg) and cyclooxygenase (COX, meclofenamate, 3 mg/kg), and during subsequent ACh. In GK rats, coronary vasodilatation in response to ACh and SNP was blunted compared with Wistar rats, and responses to ACh were abolished after blockade. In Wistar rats, IH blunted the ability of ACh or SNP to increase the number of visible vessels. In GK rats exposed to IH, neither ACh nor SNP were able to increase visible vessel number or caliber, and blockade resulted in marked vasoconstriction. Our findings indicate that IH augments the deleterious effects of insulin resistance on coronary endothelial function. They appear to increase the dependence of the coronary microcirculation on NO and/or vasodilator prostanoids, and greatly blunt the residual vasodilation in response to ACh after blockade of NOS/COX, presumably mediated by endothelium-derived hyperpolarizing factors.