Published in

International Union of Crystallography, Acta Crystallographica Section C: Structural Chemistry, 4(74), p. 452-459, 2018

DOI: 10.1107/s2053229618003583

Links

Tools

Export citation

Search in Google Scholar

Supramolecular arrangement and photophysical properties of a dinuclear cyanophenylboronic acid ester

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Boronic esters are useful building blocks for crystal engineering and the generation of supramolecular architectures, including macrocycles, cages and polymers (one-, two- and three-dimensional), with potential utility in diverse fields such as separation, storage and luminescent materials. The novel dinuclear cyanophenylboronic ester described herein, namely 4,4′-(2,4,8,10-tetraoxa-3,9-diboraspiro[5.5]undecane-3,9-diyl)dibenzonitrile, C19H16B2N2O4, was prepared by condensation of 4-cyanophenylboronic acid and pentaerythritol and fully characterized by elemental analysis, IR and NMR (1H and 11B) spectroscopy, single-crystal X-ray diffraction analysis and TG-DSC (thermogravimetry–differential scanning calorimetry) studies. In addition, the photophysical properties were examined in solution and in the solid state by UV–Vis and fluorescence spectroscopies. Density functional theory (DFT) calculations with ethanol as solvent reproduced reasonably well the HOMO (highest occupied molecular orbital) and LUMO (lowest unoccupied molecular orbital) of the title compound. Hirshfeld surface and fingerprint plot analyses are presented to illustrate the supramolecular connectivity in the solid state.