Dissemin is shutting down on January 1st, 2025

Published in

Nature Research, Scientific Reports, 1(8), 2018

DOI: 10.1038/s41598-018-22062-w

Links

Tools

Export citation

Search in Google Scholar

Stirring does not make populations well mixed

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractIn evolutionary dynamics, the notion of a ‘well-mixed’ population is usually associated with all-to-all interactions at all times. This assumption simplifies the mathematics of evolutionary processes, and makes analytical solutions possible. At the same time the term ‘well-mixed’ suggests that this situation can be achieved by physically stirring the population. Using simulations of populations in chaotic flows, we show that in most cases this is not true: conventional well-mixed theories do not predict fixation probabilities correctly, regardless of how fast or thorough the stirring is. We propose a new analytical description in the fast-flow limit. This approach is valid for processes with global and local selection, and accurately predicts the suppression of selection as competition becomes more local. It provides a modelling tool for biological or social systems with individuals in motion.