Dissemin is shutting down on January 1st, 2025

Published in

Copernicus Publications, Proceedings of the International Cartographic Association, (1), p. 1-5, 2018

DOI: 10.5194/ica-proc-1-130-2018

Links

Tools

Export citation

Search in Google Scholar

Estimating changes in urban land and urban population using refined areal interpolation techniques

Journal article published in 2018 by Hamidreza Zoraghein ORCID, Stefan Leyk
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Abstract. The analysis of changes in urban land and population is important because the majority of future population growth will take place in urban areas. U.S. Census historically classifies urban land using population density and various land-use criteria. This study analyzes the reliability of census-defined urban lands for delineating the spatial distribution of urban population and estimating its changes over time. To overcome the problem of incompatible enumeration units between censuses, regular areal interpolation methods including Areal Weighting (AW) and Target Density Weighting (TDW), with and without spatial refinement, are implemented. The goal in this study is to estimate urban population in Massachusetts in 1990 and 2000 (source zones), within tract boundaries of the 2010 census (target zones), respectively, to create a consistent time series of comparable urban population estimates from 1990 to 2010. Spatial refinement is done using ancillary variables such as census-defined urban areas, the National Land Cover Database (NLCD) and the Global Human Settlement Layer (GHSL) as well as different combinations of them. The study results suggest that census-defined urban areas alone are not necessarily the most meaningful delineation of urban land. Instead, it appears that alternative combinations of the above-mentioned ancillary variables can better depict the spatial distribution of urban land, and thus make it possible to reduce the estimation error in transferring the urban population from source zones to target zones when running spatially-refined temporal areal interpolation.