Published in

International Union of Crystallography, Journal of Applied Crystallography, 2(51), p. 337-343, 2018

DOI: 10.1107/s1600576718000808

Links

Tools

Export citation

Search in Google Scholar

Structural evolution of a Ge-substituted SnSe thermoelectric material with low thermal conductivity

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Thermoelectric materials are expected to become new alternative sources of sustainable energy. Among them, the SnSe intermetallic alloy has been described as an excellent thermoelectric compound, characterized by an extremely low thermal conductivity with maximum performance at the onset of a structural phase transition at 800 K. Recently, novel SnSe derivatives with Ge substitution have been synthesized by a direct arc-melting technique. This produces nanostructured polycrystalline samples that exhibit a record high Seebeck coefficient, anticipating an excellent performance above room temperature. Here, the structural phase transition from a GeS-type structure (space groupPnma) to a TlI-type structure (space groupCmcm) is investigatedin situ vianeutron powder diffraction (NPD) in the temperature range 298–853 K for the selected composition Sn0.8Ge0.2Se. This transition takes place at 803 K, as shown by differential scanning calorimetry. The analysis from the NPD data shows a non-monotonic behaviour of the anisotropic displacement parameters upon entering the domain of theCmcmstructure. The energies of the atomic vibrations have been quantitatively analysed by fitting the temperature-dependent mean-square displacements to Einstein oscillators. The thermal conductivity of Sn0.8Ge0.2Se is as low as 0.35 W m−1 K−1at 773 K, which mostly represents the lattice thermal contribution.