Published in

Public Library of Science, PLoS ONE, 12(8), p. e74459, 2013

DOI: 10.1371/journal.pone.0074459

Links

Tools

Export citation

Search in Google Scholar

Using Stable Isotope Compositions of Animal Tissues to Infer Trophic Interactions in Gulf of Mexico Lower Slope Seep Communities

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

We analyzed the tissue carbon, nitrogen, and sulfur stable isotope contents of macrofaunal communities associated with vestimentiferan tubeworms and bathymodiolin mussels from the Gulf of Mexico lower continental slope (970-2800 m). Shrimp in the genus Alvinocaris associated with vestimentiferans from shallow (530 m) and deep (1400-2800 m) sites were used to test the hypothesis that seep animals derive a greater proportion of their nutrition from seeps (i.e. a lower proportion from the surface) at greater depths. To account for spatial variability in the inorganic source pool, we used the differences between the mean tissue δ(13)C and δ(15)N of the shrimp in each collection and the mean δ (13)C and δ(15)N values of the vestimentiferans from the same collection, since vestimentiferans are functionally autotrophic and serve as a baseline for environmental isotopic variation. There was a significant negative relationship between this difference and depth for both δ(13)C and δ(15)N (p=0.02 and 0.007, respectively), which supports the hypothesis of higher dependence on seep nutrition with depth. The small polychaete worm Protomystides sp. was hypothesized to be a blood parasite of the vestimentiferan Escarpialaminata. There was a highly significant linear relationship between the δ(13)C values of Protomystides sp. and the E. laminata individuals to which they were attached across all collections (p < 0.001) and within a single collection (p = 0.01), although this relationship was not significant for δ(15)N and δ(34)S. We made several other qualitative inferences with respect to the feeding biology of the taxa occurring in these lower slope seeps, some of which have not been described prior to this study.