Dissemin is shutting down on January 1st, 2025

Published in

American Physiological Society, Journal of Applied Physiology, 5(88), p. 1907-1914

DOI: 10.1152/jappl.2000.88.5.1907

Links

Tools

Export citation

Search in Google Scholar

Development of the ventilatory response to hypoxia in Swiss CD-1 mice

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

We examined developmental changes in breathing pattern and the ventilatory response to hypoxia (7.4% O2) in unanesthetized Swiss CD-1 mice ranging in age from postnatal day 0 to 42(P0–P42) using head-out plethysmography. The breathing pattern of P0 mice was unstable. Apneas were frequent at P0 (occupying 29 ± 6% of total time) but rare by P3 (5 ± 2% of total time). Tidal volume increased in proportion to body mass (∼10–13 ml/kg), but increases in respiratory frequency (f) (55 ± 7, 130 ± 13, and 207 ± 20 cycles/min for P0, P3, and P42, respectively) were responsible for developmental increases in minute ventilation (690 ± 90, 1,530 ± 250, and 2,170 ± 430 ml ⋅ min 1 ⋅ kg 1for P0, P3, and P42, respectively). Between P0 and P3, increases in f were mediated by reductions in apnea and inspiratory and expiratory times; beyond P3, increases were due to reductions in expiratory time. Mice of all ages showed a biphasic hypoxic ventilatory response, which differed in two respects from the response typical of most mammals. First, the initial hyperpnea, which was greatest in mature animals, decreased developmentally from a maximum, relative to control, of 2.58 ± 0.29 in P0 mice to 1.32 ± 0.09 in P42mice. Second, whereas ventilation typically falls to or below control in most neonatal mammals, ventilation remained elevated relative to control throughout the hypoxic exposure in P0 (1.73 ± 0.31), P3 (1.64 ± 0.29), and P9 (1.34 ± 0.17) mice but not in P19 or P42 mice.