Published in

Massachusetts Institute of Technology Press, The Journal of Cognitive Neuroscience, 7(30), p. 999-1010, 2018

DOI: 10.1162/jocn_a_01257

Links

Tools

Export citation

Search in Google Scholar

Decoding digits and dice with Magnetoencephalography: Evidence for a shared representation of magnitude

Journal article published in 2018 by Lina Teichmann, Tijl Grootswagers, Thomas Carlson, Anina N. Rich ORCID
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

Numerical format describes the way magnitude is conveyed, for example, as a digit (“3”) or Roman numeral (“III”). In the field of numerical cognition, there is an ongoing debate of whether magnitude representation is independent of numerical format. Here, we examine the time course of magnitude processing when using different symbolic formats. We presented participants with a series of digits and dice patterns corresponding to the magnitudes of 1 to 6 while performing a 1-back task on magnitude. Magnetoencephalography offers an opportunity to record brain activity with high temporal resolution. Multivariate pattern analysis applied to magnetoencephalographic data allows us to draw conclusions about brain activation patterns underlying information processing over time. The results show that we can cross-decode magnitude when training the classifier on magnitude presented in one symbolic format and testing the classifier on the other symbolic format. This suggests a similar representation of these numerical symbols. In addition, results from a time generalization analysis show that digits were accessed slightly earlier than dice, demonstrating temporal asynchronies in their shared representation of magnitude. Together, our methods allow a distinction between format-specific signals and format-independent representations of magnitude showing evidence that there is a shared representation of magnitude accessed via different symbols.