Published in

CSIRO Publishing, Functional Plant Biology, 7(44), p. 665, 2017

DOI: 10.1071/fp16370

Links

Tools

Export citation

Search in Google Scholar

Combined effects of soil salinity and high temperature on photosynthesis and growth of quinoa plants (Chenopodium quinoa)

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The halophytic crop quinoa (Chenopodium quinoa Willd.) is adapted to soil salinity and cold climate, but recent investigations have shown that quinoa can be grown in significantly warmer latitudes, i.e. the Mediterranean region, where high temperature and soil salinity can occur in combination. In this greenhouse study, effects of saltwater irrigation and high temperature on growth and development of the Bolivian cultivar ‘Achachino’ were determined. Development was slightly delayed in response to saltwater treatment, but significantly faster at high temperature. Biomass and seed yield decreased in response to salt, but not to high temperature. Plants increased their number of stomata in response to salt stress, but reduced its size on both sides of the leaf, whereas high temperature treatment significantly increased the stomata size on the abaxial leaf surface. When salt and high temperature was combined, the size of stomata was reduced only on the abaxial side of the leaf, and the number of epidermal bladder cells significantly increased on the abaxial leaf surface, resulting in preservation of photosynthetic quantum yields. We hypothesise that this morphological plasticity improves the partition of water and CO2 resulting in maintenance of photosynthesis in quinoa under adverse environmental conditions. We present a GLM-model that predicts yield parameters of quinoa grown in regions affected by soil salinity, high temperature and the factors combined.