Published in

Oxford University Press (OUP), ICES Journal of Marine Science, 9(74), p. 2437-2447

DOI: 10.1093/icesjms/fsx067

Links

Tools

Export citation

Search in Google Scholar

Endogenous fishing mortalities: a state-space bioeconomic model

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract A methodology that endogenously determines catchability functions that link fishing mortality with contemporaneous stock abundance is presented. We consider a stochastic age-structured model for a fishery composed by a number of fishing units (fleets, vessels or métiers) that optimally select the level of fishing effort to be applied considering total mortalities as given. The introduction of a balance constrain which guarantees that total mortality is equal to the sum of individual fishing mortalities optimally selected, enables total fishing mortality to be determined as a combination of contemporaneous abundance and stochastic processes affecting the fishery. In this way, future abundance can be projected as a dynamic system that depends on contemporaneous abundance. The model is generic and can be applied to several issues of fisheries management. In particular, we illustrate how to apply the methodology to assess the floating band target management regime for controlling fishing mortalities which is inspired in the new multi-annual plans. Our results support this management regime for the Mediterranean demersal fishery in Northern Spain.