Published in

Elsevier, Bioresource Technology, (115), p. 126-135, 2012

DOI: 10.1016/j.biortech.2011.11.054

Links

Tools

Export citation

Search in Google Scholar

Immobilization of biocatalysts for enzymatic polymerizations: Possibilities, advantages, applications

Journal article published in 2012 by Nemanja Miletić, Aleksandra Nastasović, Katja Loos ORCID
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Biotechnology also holds tremendous opportunities for realizing functional polymeric materials. Biocatalytic pathways to polymeric materials are an emerging research area with not only enormous scientific and technological promise, but also a tremendous impact on environmental issues. Many of the enzymatic polymerizations reported proceed in organic solvents. However, enzymes mostly show none of their profound characteristics in organic solvents and can easily denature under industrial conditions. Therefore, natural enzymes seldom have the features adequate to be used as industrial catalysts in organic synthesis. The productivity of enzymatic processes is often low due to substrate and/or product inhibition. An important route to improving enzyme performance in non-natural environments is to immobilize them. In this review we will first summarize some of the most prominent examples of enzymatic polymerizations and will subsequently review the most important immobilization routes that are used for the immobilization of biocatalysts relevant to the field of enzymatic polymerizations.