Published in

EDP Sciences, Astronomy & Astrophysics, (568), p. A2, 2014

DOI: 10.1051/0004-6361/201424135

Links

Tools

Export citation

Search in Google Scholar

TheGaia-ESO Survey: Metallicity of the Chamaeleon I star-forming region

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Context. Recent metallicity determinations in young open clusters and star-forming regions suggest that the latter may be characterized by a slightly lower metallicity than the Sun and older clusters in the solar vicinity. However, these results are based on small statistics and inhomogeneous analyses. The Gaia-ESO Survey is observing and homogeneously analyzing large samples of stars in several young clusters and star-forming regions, hence allowing us to further investigate this issue. Aims. We present a new metallicity determination of the Chamaeleon I star forming region. based on the products distributed in the first internal release of the Gaia-ESO Survey. Methods. The 48 candidate members of Chamaeleon I have been observed with the high-resolution, spectrograph UVES. We use the surface gravity, lithium line equivalent width, and position in the Hertzsprimg-Russell diagram to confirm the cluster members, and we use the iron abundance to derive the mean metallicity of the region. Results. Out of the 48 targets. we confirm 15 high probability members. Considering the metallicity measurements for nine of them. we find that the iron abundance of Chamaeleon I is slightly subsolar with a mean value [Fe/H] = -0.08 +/- 0.04 dex, This result agrees with the metallicity determination of other nearby star-forming regions and suggests that the chemical pattern of the youngest stars in the solar neighborhood is indeed more metal-poor than the Sun. We argue that this evidence may be related to the chemical distribution of the Gould Belt that contains most of the nearby star-forming regions and young clusters.