Published in

Elsevier, Journal of Biological Chemistry, 11(284), p. 6966-6971, 2009

DOI: 10.1074/jbc.m808877200

Links

Tools

Export citation

Search in Google Scholar

The Secondary Multidrug/Proton Antiporter MdfA Tolerates Displacements of an Essential Negatively Charged Side Chain

Journal article published in 2009 by Nadejda Sigal, Nir Fluman ORCID, Shira Siemion, Eitan Bibi
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

The largest family of solute transporters includes ion motive force-driven secondary transporters. Several well characterized solute-specific transport systems in this group have at least one irreplaceable acidic residue that plays a critical role in energy coupling during transport. Previous studies have established the importance of acidic residues in substrate recognition by major facilitator superfamily secondary multidrug transporters, but their role in the transport mechanism remained unknown. We have been investigating the involvement of acidic residues in the mechanism of MdfA, an Escherichia coli secondary multidrug/proton antiporter. We demonstrated that no single negatively charged side chain plays an irreplaceable role in MdfA. Accordingly, we hypothesized that MdfA might be able to utilize at least two acidic residues alternatively. In this study, we present evidence that indeed, unlike solute-specific secondary transporters, MdfA tolerates displacements of an essential negative charge to various locations in the putative drug translocation pathway. The results suggest that MdfA utilizes a proton translocation strategy that is less sensitive to perturbations in the geometry of the proton-binding site, further illustrating the exceptional structural promiscuity of multidrug transporters.