Published in

CSIRO Publishing, Marine & Freshwater Research, 8(68), p. 1544, 2017

DOI: 10.1071/mf16125

Links

Tools

Export citation

Search in Google Scholar

Migration patterns and estuarine aggregations of a catadromous fish, Australian bass (Percalates novemaculeata) in a regulated river system

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Catadromous fish species require adequate flows to migrate between fresh and saltwater habitats to reproduce. However, artificial barriers and flow alteration affect fish populations by reducing habitat connectivity and disrupting movement cues. In regulated rivers, it is critical that migratory flow requirements are quantified to optimise water allocation for multiple users. In the present study, we assessed the migratory timing, flow and estuarine aggregation requirements for Australian bass (Percalates novemaculeata). Over 2 years, 66 bass were tracked using an acoustic receiver array in the Logan River (Qld, Australia). Bass performed large-scale downstream movements in response to elevated winter flows (40 and 108m3 s–1), which facilitated migration to the lower estuary, where salinity conditions were appropriate for spawning. Bass migrations occurred only when gonads were mature, despite large flows providing opportunities for movement outside this period. Experimental flow releases from an impoundment (2.1m3 s–1) during winter did not elicit a migratory response. Connectivity between upstream and estuarine habitats was reduced by the presence of instream weirs, with downstream movement across weirs occurring only when sufficient flow magnitude was achieved (>76.1m3 s–1). These findings are relevant for water resource managers formulating environmental flow rules for catadromous fish species in systems with multiple instream artificial barriers.