Published in

American Association of Immunologists, The Journal of Immunology, 2(198), p. 623-628, 2017

DOI: 10.4049/jimmunol.1601686

Links

Tools

Export citation

Search in Google Scholar

Cutting Edge: Adenosine A2a Receptor Signals Inhibit Germinal Center T Follicular Helper Cell Differentiation during the Primary Response to Vaccination

Journal article published in 2016 by Shirdi E. Schmiel, Jessica A. Yang, Marc K. Jenkins ORCID, Daniel L. Mueller
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract Adenosine A2a receptor (A2aR) signaling acts as a barrier to autoimmunity by promoting anergy, inducing regulatory T cells, and inhibiting effector T cells. However, in vivo effects of A2aR signaling on polyclonal CD4 T cells during a primary response to foreign Ag has yet to be determined. To address this problem, we immunized mice with peptide Ag 2W1S coupled to PE in CFA and treated with the selective A2aR agonist CGS-21680 (CGS). 2W1S:I-Ab-specific tetramer-binding CD4 T cells did not become anergic or differentiate into Foxp3+ regulatory T cells. Additionally, CGS treatment did not inhibit Th1 or Th17 differentiation. However, CGS did abrogate germinal center T follicular helper cells, and blunted PE-specific germinal center B cell responses. The use of A2aR-deficient CD4 T cells established that this CGS effect was T cell intrinsic. Therefore, this study has identified a unique role for A2aRs in regulating CD4 T cell differentiation during vaccination.