Published in

American Meteorological Society, Journal of Physical Oceanography, 2(47), p. 405-418, 2017

DOI: 10.1175/jpo-d-16-0161.1

Links

Tools

Export citation

Search in Google Scholar

Pathways of Meltwater Export from Petermann Glacier, Greenland

Journal article published in 2017 by Céline Heuzé ORCID, Anna Wåhlin, Helen L. Johnson, Andreas Münchow
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

AbstractIntrusions of Atlantic Water cause basal melting of Greenland’s marine-terminating glaciers and ice shelves, such as that of Petermann Glacier, in northwest Greenland. The fate of the resulting glacial meltwater is largely unknown. It is investigated here, using hydrographic observations collected during a research cruise in Petermann Fjord and adjacent Nares Strait onboard icebreaker (I/B) Oden in August 2015. A three end-member mixing method provides the concentration of Petermann ice shelf meltwater. Meltwater from Petermann is found in all of the casts in adjacent Nares Strait, with the highest concentration along the Greenland coast in the direction of Kelvin wave phase propagation. The meltwater from Petermann mostly flows out on the northeast side of the fjord as a baroclinic boundary current, with the depth of maximum meltwater concentrations approximately 150 m and shoaling along its pathway. At the outer sill, which separates the fjord from the ambient ocean, approximately 0.3 mSv (1 Sv ≡ 106 m3 s−1) of basal meltwater leaves the fjord at depths between 100 and 300 m. The total geostrophic heat and freshwater fluxes close to the glacier’s terminus in August 2015 were similar to those estimated in August 2009, before the two major calving events that reduced the length of Petermann’s ice tongue by nearly a third and despite warmer inflowing Atlantic Water. These results provide a baseline but also highlight what is needed to assess properly the impact on ocean circulation and sea level of Greenland’s mass loss as the Atlantic Water warms up.