Dissemin is shutting down on January 1st, 2025

Published in

SAGE Publications, Annals of Pharmacotherapy, 3(51), p. 209-218, 2016

DOI: 10.1177/1060028016676831

Links

Tools

Export citation

Search in Google Scholar

Population Pharmacokinetics and Pharmacodynamics of Doripenem in Obese, Hospitalized Patients

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Background: Doripenem population pharmacokinetics and dosing recommendations are limited in obesity. Objective: To evaluate the population pharmacokinetics and pharmacodynamics of doripenem in obese patients. Methods: Hospitalized adults with a body mass index (BMI) ≥ 40 kg/m2 or total body weight (TBW) ≥45.5 kg over their ideal body weight received doripenem 500 mg every 8 hours, infused over 1 hour. Population pharmacokinetic analyses were performed using NONMEM, and Monte Carlo simulations were performed for 5 intermittent and prolonged infusion dosing regimens to calculate probability of target attainment (PTA) at 40% and 100% fT>MIC (free drug concentrations above the minimum inhibitory concentration). Results: A total of 20 patients were studied: 10 in an intensive care unit (ICU) and 10 in a non-ICU. A 2-compartment model with first-order elimination best described the serum concentration-time data. Doripenem clearance (CL) was significantly associated with creatinine CL (CRCL), volume of the central compartment with TBW and ICU residence, and volume of the peripheral compartment with TBW ( P < 0.05). Using 40% fT>MIC, PTA was >90% for all simulated dosing regimens at MICs ≤2 mg/L. Using 100% fT>MIC, prolonged infusions of 1 g every 6 hours and 2 g every 8 hours achieved >90% PTA at MICs ≤2 mg/L. Conclusions: CRCL, ICU residence, and TBW are significantly associated with doripenem pharmacokinetics. Currently approved dosing regimens provide adequate pharmacodynamic exposures at 40% fT>MIC for susceptible bacteria in obese patients. However, prolonged infusions of larger doses are needed if a higher pharmacodynamic target is desired.