Published in

Trans Tech Publications, Advances in Science and Technology, 2016

DOI: 10.4028/www.scientific.net/ast.99.48

Links

Tools

Export citation

Search in Google Scholar

Enhanced Gas Sensing Properties of Different ZnO 3D Hierarchical Structures

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Six different ZnO nanomorphologies were synthesized trough wet chemical routes starting from a water solution of zinc nitrate hexahydrate, obtaining two types of morphologies: bidimensional nanocrystals and nanoparticles aggregates. Powders and films characterizations have been carried out by means of TG–DTA, SEM, and X-ray diffraction analysis. Finally, electrical measurements were performed with the aim to compare conductive properties of the thick films, surface barrier heights and gas sensing features, mainly versus acetone and other VOCs related to the breath gas analysis. Among the different morphologies tested, it turned out that the samples constituted by nanoparticle aggregates exhibited the best performances versus all gases, but especially toward acetone at sub-ppm level.