Dissemin is shutting down on January 1st, 2025

Published in

Taylor and Francis Group, Bioscience, Biotechnology and Biochemistry, 2(81), p. 396-402, 2017

DOI: 10.1080/09168451.2016.1243985

Links

Tools

Export citation

Search in Google Scholar

Laboratory-scale production of (S)-reticuline, an important intermediate of benzylisoquinoline alkaloids, using a bacterial-based method

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Red circle
Preprint: archiving forbidden
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract Benzylisoquinoline alkaloids (BIAs) are a group of plant secondary metabolites that have been identified as targets for drug discovery because of their diverse pharmaceutical activities. Well-known BIAs are relatively abundant in plants and have therefore been extensively studied. However, although unknown BIAs are also thought to have valuable activities, they are difficult to obtain because the raw materials are present at low abundance in nature. We have previously reported the fermentative production of an important intermediate (S)-reticuline from dopamine using Escherichia coli. However, the yield is typically limited. Here, we improved production efficiency by combining in vivo tetrahydropapaveroline production in E. coli with in vitro enzymatic synthesis of (S)-reticuline. Finally, 593 mg of pure (S)-reticuline was obtained from 1 L of the reaction mixture. Because this bacterial-based method is simple, it could be widely used for production of (S)-reticuline and related BIAs, thereby facilitating studies of BIAs for drug discovery.