Published in

American Association for Cancer Research, Cancer Epidemiology, Biomarkers & Prevention, 2(26), p. 240-248, 2017

DOI: 10.1158/1055-9965.epi-16-0640

Links

Tools

Export citation

Search in Google Scholar

A Tissue Systems Pathology Test Detects Abnormalities Associated with Prevalent High-Grade Dysplasia and Esophageal Cancer in Barrett's Esophagus

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract Background: There is a need for improved tools to detect high-grade dysplasia (HGD) and esophageal adenocarcinoma (EAC) in patients with Barrett's esophagus. In previous work, we demonstrated that a 3-tier classifier predicted risk of incident progression in Barrett's esophagus. Our aim was to determine whether this risk classifier could detect a field effect in nondysplastic (ND), indefinite for dysplasia (IND), or low-grade dysplasia (LGD) biopsies from Barrett's esophagus patients with prevalent HGD/EAC. Methods: We performed a multi-institutional case–control study to evaluate a previously developed risk classifier that is based upon quantitative image features derived from 9 biomarkers and morphology, and predicts risk for HGD/EAC in Barrett's esophagus patients. The risk classifier was evaluated in ND, IND, and LGD biopsies from Barrett's esophagus patients diagnosed with HGD/EAC on repeat endoscopy (prevalent cases, n = 30, median time to HGD/EAC diagnosis 140.5 days) and nonprogressors (controls, n = 145, median HGD/EAC-free surveillance time 2,015 days). Results: The risk classifier stratified prevalent cases and non-progressor patients into low-, intermediate-, and high-risk classes [OR, 46.0; 95% confidence interval, 14.86-169 (high-risk vs. low-risk); P < 0.0001]. The classifier also provided independent prognostic information that outperformed the subspecialist and generalist diagnosis. Conclusions: A tissue systems pathology test better predicts prevalent HGD/EAC in Barrett's esophagus patients than pathologic variables. The results indicate that molecular and cellular changes associated with malignant transformation in Barrett's esophagus may be detectable as a field effect using the test. Impact: A tissue systems pathology test may provide an objective method to facilitate earlier identification of Barrett's esophagus patients requiring therapeutic intervention. Cancer Epidemiol Biomarkers Prev; 26(2); 240–8. ©2016 AACR.