Published in

SAGE Publications, Lupus, 3(26), p. 227-236, 2016

DOI: 10.1177/0961203316671810

Links

Tools

Export citation

Search in Google Scholar

Complementary role of cardiovascular imaging and laboratory indices in early detection of cardiovascular disease in systemic lupus erythematosus

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Background Cardiovascular disease (CVD) has been documented in >50% of systemic lupus erythematosus (SLE) patients, due to a complex interplay between traditional risk factors and SLE-related factors. Various processes, such as coronary artery disease, myocarditis, dilated cardiomyopathy, vasculitis, valvular heart disease, pulmonary hypertension and heart failure, account for CVD complications in SLE. Methods Electrocardiogram (ECG), echocardiography (echo), nuclear techniques, cardiac computed tomography (CT), cardiovascular magnetic resonance (CMR) and cardiac catheterization (CCa) can detect CVD in SLE at an early stage. ECG and echo are the cornerstones of CVD evaluation in SLE. The routine use of cardiac CT and nuclear techniques is limited by radiation exposure and use of iodinated contrast agents. Additionally, nuclear techniques are also limited by low spatial resolution that does not allow detection of sub-endocardial and sub-epicardial lesions. CCa gives definitive information about coronary artery anatomy and pulmonary artery pressure and offers the possibility of interventional therapy. However, it carries the risk of invasive instrumentation. Recently, CMR was proved of great value in the evaluation of cardiac function and the detection of myocardial inflammation, stress-rest perfusion defects and fibrosis. Results An algorithm for CVD evaluation in SLE includes clinical, laboratory, ECG and echo assessment as well as CMR evaluation in patients with inconclusive findings, persistent cardiac symptoms despite normal standard evaluation, new onset of life-threatening arrhythmia/heart failure and/or as a tool to select SLE patients for CCa. Conclusions A non-invasive approach including clinical, laboratory and imaging evaluation is key for early CVD detection in SLE.