EMBO Press, EMBO Reports, 5(13), p. 423-430, 2012
Full text: Download
Enhancers are regulatory DNA elements that dictate the spatial and temporal patterns of gene expression during development. Recent evidence suggests that the distinct chromatin features of enhancer regions provide the permissive landscape required for the differential access of diverse signalling molecules that drive cell-specific gene expression programmes. The epigenetic patterning of enhancers occurs before cell fate decisions, suggesting that the epigenetic information required for subsequent differentiation processes is embedded within the enhancer element. Lineage studies indicate that the patterning of enhancers might be regulated by the intricate interplay between DNA methylation status, the binding of specific transcription factors to enhancers and existing histone modifications. In this review, we present insights into the mechanisms of enhancer function, which might ultimately facilitate cell reprogramming strategies for use in regenerative medicine.