Published in

Springer Verlag, International Journal of Environmental Science and Technology, 1(9), p. 69-77

DOI: 10.1007/s13762-011-0018-2

Links

Tools

Export citation

Search in Google Scholar

Implications of chloride-enhanced cadmium uptake in saline agriculture: modeling cadmium uptake by maize and tobacco

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Chloride salinity has been strongly related to enhanced cadmium (Cd) uptake by plants due to increased solubility in the soil solution, even in agricultural soil with very low levels of cadmium. This finding is relevant because the cadmium content of food crops is an important concern for human health. Therefore, the aim of this study was to predict and discuss the chlorine-enhanced uptake of cadmium by two common crops: maize and tobacco under “non-saline” (1 mM) and “very strongly saline” (200 mM) scenarios using a modified ‘biotic ligand model’ and datasets from a set of soil and hydroponic experiments. Results indicated that predicted cadmium uptake rates (expressed as cadmium in plant μmol m-2 root) by maize and tobacco plants were consistently higher (54 and 15%, respectively) assuming conditions of ‘very strong salinity’ soil compared to the simulated ‘non-saline’ soil. In the light of the results of the present research, valuable information is given on modeled cadmium phytoavailability as an indication of the potential risk due to increased cadmium uptake by crops under saline conditions, especially as the enhancement of cadmium uptake in the presence of Cl- salinity may be a general trend that occurs in many edible crops. The biotic ligand model parameterization applied in the present study attempted to simulate conditions commonly found in natural cadmium and salt-affected soils. However, caution is needed to extrapolate results obtained from these models to real soil conditions.