Dissemin is shutting down on January 1st, 2025

Published in

Nature Research, Scientific Reports, 1(8), 2018

DOI: 10.1038/s41598-018-20529-4

Links

Tools

Export citation

Search in Google Scholar

Effects of blood glucose level on 18F fluorodeoxyglucose (18F-FDG) uptake for PET/CT in normal organs: an analysis on 5623 patients

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractOur purpose was to evaluate the effect of glycemia on 18F-FDG uptake in normal organs of interest. The influences of other confounding factors, such as body mass index (BMI), diabetes, age, and sex, on the relationships between glycemia and organ-specific standardized uptake values (SUVs) were also investigated. We retrospectively identified 5623 consecutive patients who had undergone clinical PET/CT for oncological indications. Patients were stratified into groups based on glucose levels, measured immediately before 18F-FDG injection. Differences in mean SUVmax values among glycemic ranges were clinically significant only when >10% variation was observed. The brain was the only organ that presented a significant inverse relationship between SUVmax and glycemia (p < 0.001), even after controlling for diabetic status. No such difference was observed for the liver or lung. After adjustment for sex, age, and BMI, the association of glycemia with SUVmax was significant for the brain and liver, but not for the lung. In conclusion, the brain was the only organ analyzed showing a clinically significant relationship to glycemia after adjustment for potentially confounding variables. The lung was least affected by the variables in our model, and may serve as an alternative background tissue to the liver.