Dissemin is shutting down on January 1st, 2025

Published in

Nature Research, Scientific Reports, 1(8), 2018

DOI: 10.1038/s41598-018-20493-z

Links

Tools

Export citation

Search in Google Scholar

Spinal cholinergic interneurons differentially control motoneuron excitability and alter the locomotor network operational range

Journal article published in 2018 by Maria Bertuzzi ORCID, Konstantinos Ampatzis ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractWhile cholinergic neuromodulation is important for locomotor circuit operation, the specific neuronal mechanisms that acetylcholine employs to regulate and fine-tune the speed of locomotion are largely unknown. Here, we show that cholinergic interneurons are present in the zebrafish spinal cord and differentially control the excitability of distinct classes of motoneurons (slow, intermediate and fast) in a muscarinic dependent manner. Moreover, we reveal that m2-type muscarinic acetylcholine receptors (mAChRs) are present in fast and intermediate motoneurons, but not in the slow motoneurons, and that their activation decreases neuronal firing. We also reveal a strong correlation between the muscarinic receptor configuration on motoneurons and the ability of the animals to locomote at different speeds, which might serve as a plasticity mechanism to alter the operational range of the locomotor networks. These unexpected findings provide new insights into the functional flexibility of motoneurons and how they execute locomotion at different speeds.