Published in

Nature Research, Scientific Reports, 1(8), 2018

DOI: 10.1038/s41598-018-20239-x

Links

Tools

Export citation

Search in Google Scholar

Limits of Kirchhoff’s Laws in Plasmonics

Journal article published in 2018 by Gary Razinskas ORCID, Paolo Biagioni ORCID, Bert Hecht ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractThe validity of Kirchhoff’s laws in plasmonic nanocircuitry is investigated by studying a junction of plasmonic two-wire transmission lines. We find that Kirchhoff’s laws are valid for sufficiently small values of a phenomenological parameter κ relating the geometrical parameters of the transmission line with the effective wavelength of the guided mode. Beyond such regime, for large values of the phenomenological parameter, increasing deviations occur and the equivalent impedance description (Kirchhoff’s laws) can only provide rough, but nevertheless useful, guidelines for the design of more complex plasmonic circuitry. As an example we investigate a system composed of a two-wire transmission line and a nanoantenna as the load. By addition of a parallel stub designed according to Kirchhoff’s laws we achieve maximum signal transfer to the nanoantenna.