Published in

American Association for Cancer Research, Cancer Research, 11(71), p. 3812-3821, 2011

DOI: 10.1158/0008-5472.can-10-3072

Links

Tools

Export citation

Search in Google Scholar

An EGFR-ERK-SOX9 signaling cascade Links Urothelial Development and Regeneration to Cancer

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract Like many carcinomas, urothelial carcinoma (UroCa) is associated with chronic injury. A better understanding of this association could inform improved strategies for preventing and treating this disease. We investigated the expression, regulation, and function of the transcriptional regulator SRY-related high-mobility group box 9 (Sox9) in urothelial development, injury repair, and cancer. In mouse bladders, Sox9 levels were high during periods of prenatal urothelial development and diminished with maturation after birth. In adult urothelial cells, Sox9 was quiescent but was rapidly induced by a variety of injuries, including exposure to the carcinogen cyclophosphamide, culture with hydrogen peroxide, and osmotic stress. Activation of extracellular signal–regulated kinases 1/2 (ERK1/2) was required for Sox9 induction in urothelial injury and resulted from activation of the epidermal growth factor receptor (Egfr) by several Egfr ligands that were dramatically induced by injury. In UroCa cell lines, SOX9 expression was constitutively upregulated and could be suppressed by EGFR or ERK1/2 blockade. Gene knockdown showed a role for SOX9 in cell migration and invasion. Accordingly, SOX9 protein levels were preferentially induced in invasive human UroCa tissue samples (n = 84) compared with noninvasive cancers (n = 56) or benign adjacent urothelium (n = 49). These results identify a novel, potentially oncogenic signaling axis linking urothelial injury to UroCa. Inhibiting this axis is feasible through a variety of pharmacologic approaches and may have clinical utility. Cancer Res; 71(11); 3812–21. ©2011 AACR.