Published in

American Chemical Society, Journal of the American Chemical Society, 21(133), p. 8062-8065, 2011

DOI: 10.1021/ja111613c

Links

Tools

Export citation

Search in Google Scholar

1H-Detected13C Photo-CIDNP as a Sensitivity Enhancement Tool in Solution NMR

Journal article published in 2011 by Jung Ho Lee, Ashok Sekhar ORCID, Silvia Cavagnero
This paper was not found in any repository; the policy of its publisher is unknown or unclear.
This paper was not found in any repository; the policy of its publisher is unknown or unclear.

Full text: Unavailable

Red circle
Preprint: archiving forbidden
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

NMR is a powerful yet intrinsically insensitive technique. The applicability of NMR to chemical and biological systems would be substantially extended by new approaches going beyond current signal-to-noise capabilities. Here, we exploit the large enhancements arising from 13C photo-chemically induced dynamic nuclear polarization (13C photo-CIDNP) in solution to improve biomolecular NMR sensitivity in the context of heteronuclear correlation spectroscopy. The 13C-PRINT pulse sequence presented here involves an initial 13C nuclear spin polarization via photo-CIDNP followed by conversion to antiphase coherence and transfer to 1H for detection. We observe substantial enhancements, up to ≫200-fold, relative to the dark (laser off) experiment. Resonances of both side-chain and backbone CH pairs are enhanced for the three aromatic residues Trp, His and Tyr and the Trp-containing σ32 peptide. The sensitivity of this experiment, defined as signal-to-noise per unit time (S/N)t, is unprecedented in the NMR polarization enhancement literature dealing with polypeptides in solution. Up to a 16-fold larger (S/N)t than the 1H-13C SE-HSQC reference sequence is achieved, for the σ32 peptide. This gain leads to a reduction in data collection time up to 256-fold, highlighting the advantages of 1H-detected 13C photo-CIDNP in solution NMR.