Published in

Lippincott, Williams & Wilkins, Medicine & Science in Sports & Exercise, 8(45), p. 1460-1468, 2013

DOI: 10.1249/mss.0b013e3182894a33

Links

Tools

Export citation

Search in Google Scholar

Effects of eccentrically and concentrically biased training on mouse muscle phenotype

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Introduction: The molecular adaptations specifically induced by different muscle contraction types have only been partially elucidated. We previously demonstrated that eccentric contractions in human quadriceps elicited proteome modifications that suggest a muscle fiber typology adaptation. We address this question in a more systematic way by examining here the effects of different running modes on the mouse muscle proteome and the muscle fiber typology. Methods: Male adult mice (C57BL6) were randomly divided into downhill running (DHR, quadricipital eccentrically biased contractions), uphill running (UHR, quadricipital concentrically biased contractions) and untrained control (CONT) groups. Running groups performed five training sessions on an inclined treadmill for 75 to 135 min/day and the quadriceps muscles were dissected 96hours after the last session. Muscle protein extracts of DHR and UHR groups (n=4/group) were subjected to a 2D-DIGE analysis coupled with mass spectrometry. The assessment of fiber type, size and number was performed on the rectus femoris of the three groups (n=6/group) using myosin heavy chain (MHC) immunohistochemistry. Results: In the proteomic analysis, eight spots identified as the fast MHC isoforms exhibited a lower abundance in DHR compared to UHR (p