Dissemin is shutting down on January 1st, 2025

Published in

American Association of Immunologists, The Journal of Immunology, 5(200), p. 1876-1888, 2018

DOI: 10.4049/jimmunol.1701532

Links

Tools

Export citation

Search in Google Scholar

Differential Expression of CD8+T Cell Cytotoxic Effector Molecules in Blood and Gastrointestinal Mucosa in HIV-1 Infection

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract We previously reported that CD8+ T cells in human gastrointestinal mucosa exhibit reduced perforin expression and weak or impaired cytotoxic capacity compared with their counterparts in blood. Nevertheless, these cells degranulate and express cytokines and chemokines in response to cognate Ag. In addition to weak expression of perforin, earlier studies suggested differential regulation of perforin and granzymes (Gzms), with GzmA and B expressed by significantly higher percentages of mucosal CD8+ T cells than perforin. However, this topic has not been fully explored. The goal of this study was to elucidate the expression and coexpression patterns of GzmA, B, and K in conjunction with perforin in rectosigmoid CD8+ T cells during HIV-1 infection. We found that expression of both perforin and GzmB, but not GzmA or GzmK, was reduced in mucosa compared with blood. A large fraction of rectosigmoid CD8+ T cells either did not express Gzms or were single-positive for GzmA. Rectosigmoid CD8+ T cells appeared skewed toward cytokine production rather than cytotoxic responses, with cells expressing multiple cytokines and chemokines generally lacking in perforin and Gzm expression. These data support the interpretation that perforin and Gzms are differentially regulated, and display distinct expression patterns in blood and rectosigmoid T cells. These studies may help inform the development of strategies to combat HIV-1 and other mucosal pathogens.