Links

Tools

Export citation

Search in Google Scholar

Stress-induced temporal variations in seismic anisotropy observed in microseismic data

Journal article published in 2004 by N. A. Teanby ORCID, Jm-M. Kendall, Rh H. Jones, O. I. Barkved
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Question mark in circle
Preprint: policy unknown
Question mark in circle
Postprint: policy unknown
Question mark in circle
Published version: policy unknown

Abstract

SUMMARY In situ stress monitoring of crustal rocks is desirable as it yields insights into earthquake mechanisms, volcanic eruptions and changes in hydrocarbon reservoirs. Shear wave splitting, induced by stress-controlled cracks in the shallow crust, provides a way to infer this stress. Temporal variations in these observations can be difficult to quantify due to scatter in the data and discontinuous observations. Here we present evidence of temporal variations in shear wave splitting from a continuous time-series with a high occurrence of microseismic events recorded in a borehole. We interpret these observations in terms of stress-controlled cracks and are able to infer changes in stress and, via modelling, suggest the cause of the anisotropy. Possible origins of the temporal variation in per cent anisotropy are tidal or oil-field production processes. Our results suggest that shear wave splitting is a viable probe for inferring changes in crustal stress in cracked rock.