Published in

Wiley, ChemBioChem, 18(14), p. 2392-2402, 2013

DOI: 10.1002/cbic.201300417

Links

Tools

Export citation

Search in Google Scholar

Dissecting the Molecular Basis of the Role of the O-Mannosylation Pathway in Disease: α-Dystroglycan and Forms of Muscular Dystrophy

Journal article published in 2013 by David Live, Lance Wells, Geert-Jan Boons ORCID
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Dystroglycanopathies are a subgroup of muscular dystrophies that arise from defects in the enzymes implicated in the recently elucidated O-mannosylation pathway, resulting in underglycosylation of α-dystroglycan. The emerging identification of additional brain proteins modified by O-mannosylation provides a broader context for interpreting the range of neurological consequences associated with dystroglycanopathies. This form of glycosylation is associated with protein mucin-like domains which present numerous serine and threonine residues as possible sites for modification. Further, the O-Man glycans coexist in this region with O-GalNAc glycans, conventionally associated with such protein sequences, resulting in a complex glycoconjugate landscape. Sorting out the relationships between the various molecular defects in glycosylation and the modes of disease presentation, as well as the regulatory interplay among the O-Man glycans, and the effects on other modes of glycosylation in the same domain is challenging. Here we provide a perspective on chemical biology approaches employing synthetic and analytical methods to address these questions.