Dissemin is shutting down on January 1st, 2025

Published in

Nature Research, Scientific Reports, 1(8), 2018

DOI: 10.1038/s41598-017-18844-3

Links

Tools

Export citation

Search in Google Scholar

Over-expression of a retinol dehydrogenase (SRP35/DHRS7C) in skeletal muscle activates mTORC2, enhances glucose metabolism and muscle performance

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractSRP-35 is a short-chain dehydrogenase/reductase belonging to the DHRS7C dehydrogenase/ reductase family 7. Here we show that its over-expression in mouse skeletal muscles induces enhanced muscle performance in vivo, which is not related to alterations in excitation-contraction coupling but rather linked to enhanced glucose metabolism. Over-expression of SRP-35 causes increased phosphorylation of AktS473, triggering plasmalemmal targeting of GLUT4 and higher glucose uptake into muscles. SRP-35 signaling involves RARα and RARγ (non-genomic effect), PI3K and mTORC2. We also demonstrate that all-trans retinoic acid, a downstream product of the enzymatic activity of SRP-35, mimics the effect of SRP-35 in skeletal muscle, inducing a synergistic effect with insulin on AKTS473 phosphorylation. These results indicate that SRP-35 affects skeletal muscle metabolism and may represent an important target for the treatment of metabolic diseases.