Published in

Wiley Open Access, FASEB Journal, 7(27), p. 2768-2776, 2013

DOI: 10.1096/fj.12-225888

Elsevier, Immunobiology, 11(217), p. 1179

DOI: 10.1016/j.imbio.2012.08.144

Links

Tools

Export citation

Search in Google Scholar

Inhibition of biomaterial-induced complement activation attenuates the inflammatory host response to implantation

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Although complement is a known contributor to biomaterial-induced complications, pathological implications and therapeutic options remain to be explored. Here we investigated the involvement of complement in the inflammatory response to polypropylene meshes commonly used for hernia repair. In vitro assays revealed deposition of complement activation fragments on the mesh after incubation in plasma. Moreover, significant mesh-induced complement and granulocyte activation was observed in plasma and leukocyte preparations, respectively. Pretreatment of plasma with the complement inhibitor compstatin reduced opsonization >2-fold, and compstatin and a C5a receptor antagonist (C5aRa) impaired granulocyte activation by 50 and 67%, respectively. We established a clinically relevant mouse model of implantation and could confirm deposition of C3 activation fragments on mesh implants in vivo using immunofluorescence. In meshes extracted after subcutaneous or peritoneal implantation, the amount of immune cell infiltrate in mice deficient in key complement components (C3, C5aR), or treated with C5aRa, was approximately half of that observed in wild-type littermates or mice treated with inactive C5aRa, respectively. Our data suggest that implantation of a widely used surgical mesh triggers the formation of an inflammatory cell microenvironment at the implant site through complement activation, and indicates a path for the therapeutic modulation of implant-related complications.—Kourtzelis, I., Rafail, S., DeAngelis, R. A., Foukas, P. G., Ricklin, D., Lambris, J. D. Inhibition of biomaterial-induced complement activation attenuates the inflammatory host response to implantation.