Published in

Nature Research, Scientific Reports, 1(8), 2018

DOI: 10.1038/s41598-017-18845-2

Links

Tools

Export citation

Search in Google Scholar

Unveiling the piezoelectric nature of polar α-phase P(VDF-TrFE) at quasi-two-dimensional limit

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractPiezoelectric response of P(VDF-TrFE), which is modulated by the dipole density due to the polarization switching on applying an electric field, allows it act as the fundamental components for electromechanical systems. As proposed since the 1970s, its polar α-phase is supposed to yield an enhanced piezoelectric activity. However, its experimental verification has never been reported, hampered by a substantial challenge for the achievement of a smooth, neat α-phase film. Here, we prepare ultrathin crystalline α-phase P(VDF-TrFE) films on the AlOx/Al-coated SiO2/Si substrates via a solution-based approach at room temperature. Thus, we unveil the piezoelectric nature of the polar α-phase P(VDF-TrFE) at a quasi-two-dimensional limit. The obtained values of the relative morphological deformation, the local effective piezoelectric coefficient, and the electric field-induced strain reach up to 37 pm, −46.4 pm V−1, and 4.1%, respectively. Such a robust piezoelectric response is even higher than that of the β-phase. Besides, the evolution of piezoelectricity, which is related to the piezoelectric properties of two polarization states, is also studied. Our work can enable the exploration of the prospective applications of polar α-phase P(VDF-TrFE) films.