Links

Tools

Export citation

Search in Google Scholar

Coarse-grain simulations of the R-SNARE fusion protein in its membrane environment detect long-lived conformational sub-states.

This paper was not found in any repository; the policy of its publisher is unknown or unclear.
This paper was not found in any repository; the policy of its publisher is unknown or unclear.

Full text: Unavailable

Question mark in circle
Preprint: policy unknown
Question mark in circle
Postprint: policy unknown
Question mark in circle
Published version: policy unknown

Abstract

Coarse-grain molecular dynamics are used to look at conformational and dynamic aspects of an R-SNARE peptide inserted in a lipid bilayer. This approach allows carrying out microsecond-scale simulations which bring to light long-lived conformational sub-states potentially interesting in the context of the membrane fusion mechanism mediated by the SNARE proteins. We show that these coarse-grain models are in agreement with most experimental data on the SNARE system, but differ in some details that may have a functional interest, most notably in the orientation of the soluble part of R-SNARE that does not appear to be spontaneously accessible for SNARE complex formation. We also compare rat and yeast sequences of R-SNARE and find some minor differences in their behavior.