Dissemin is shutting down on January 1st, 2025

Published in

Nature Research, Scientific Reports, 1(8), 2018

DOI: 10.1038/s41598-017-18753-5

Links

Tools

Export citation

Search in Google Scholar

Lack of Fgf18 causes abnormal clustering of motor nerve terminals at the neuromuscular junction with reduced acetylcholine receptor clusters

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractFGF receptor 2 is involved in the formation of the neuromuscular junction (NMJ), but its in vivo ligand remains to be determined. Laser capture microdissection of the mouse spinal motor neurons (SMNs) revealed that Fgf18 mRNA is highly expressed in SMNs in adults. Expression of Fgf18 mRNA was the highest in the spinal cord at embryonic day (E) 15.5, which gradually decreased to postnatal day 7. FGF18 protein was localized at the NMJs of the tibialis anterior muscle at E18.5 and in adults. Fgf18−/− mice at E18.5 showed decreased expressions of the NMJ-specific Chrne and Colq genes in the diaphragm. In Fgf18−/− diaphragms, the synaptophysin-positive areas at the nerve terminals and the acetylcholine receptor (AChR)-positive areas at the motor endplates were both approximately one-third of those in wild-type embryos. Fgf18−/− diaphragms ultrastructurally showed abnormal aggregation of multiple nerve terminals making a gigantic presynapse with sparse synaptic vesicles, and simplified motor endplates. In Fgf18−/− diaphragms, miniature endplate potentials were low in amplitude with markedly reduced frequency. In C2C12 myotubes, FGF18 enhanced AChR clustering, which was blocked by inhibiting FGFRs or MEK1. We propose that FGF18 plays a pivotal role in AChR clustering and NMJ formation in mouse embryogenesis.