Dissemin is shutting down on January 1st, 2025

Published in

BioMed Central, BMC Structural Biology, 1(11), 2011

DOI: 10.1186/1472-6807-11-33

Links

Tools

Export citation

Search in Google Scholar

Atomic resolution structure of EhpR: phenazine resistance in Enterobacter agglomerans Eh1087 follows principles of bleomycin/mitomycin C resistance in other bacteria

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Abstract Background The phenazines are redox-active secondary metabolites that a large number of bacterial strains produce and excrete into the environment. They possess antibiotic activity owing to the fact that they can reduce molecular oxygen to toxic reactive oxygen species. In order to take advantage of this activity, phenazine producers need to protect themselves against phenazine toxicity. Whereas it is believed that phenazine-producing pseudomonads possess highly active superoxide dismutases and catalases, it has recently been found that the plant-colonizing bacterium Enterobacter agglomerans expresses a small gene ehpR to render itself resistant towards D-alanyl-griseoluteic acid, the phenazine antibiotic produced by this strain. Results To understand the resistance mechanism installed by EhpR we have determined its crystal structure in the apo form at 2.15 Å resolution and in complex with griseoluteic acid at 1.01 Å, respectively. While EhpR shares a common fold with glyoxalase-I/bleomycin resistance proteins, the ligand binding site does not contain residues that some related proteins employ to chemically alter their substrates. Binding of the antibiotic is mediated by π-stacking interactions of the aromatic moiety with the side chains of aromatic amino acids and by a few polar interactions. The dissociation constant KD between EhpR and griseoluteic acid was quantified as 244 ± 45 μM by microscale thermophoresis measurements. Conclusions The data accumulated here suggest that EhpR confers resistance by binding D-alanyl-griseoluteic acid and acting as a chaperone involved in exporting the antibiotic rather than by altering it chemically. It is tempting to speculate that EhpR acts in concert with EhpJ, a transport protein of the major facilitator superfamily that is also encoded in the phenazine biosynthesis operon of E. agglomerans. The low affinity of EhpR for griseoluteic acid may be required for its physiological function. ; RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are.