Massachusetts Institute of Technology Press, Neural Computation, 2(27), p. 306-328, 2015
DOI: 10.1162/neco_a_00699
Full text: Download
Deciding how much evidence to accumulate before making a decision is a problem we and other animals often face, but one which is not completely understood. This issue is particularly important because a tendency to sample less information (often known as reflection impulsivity) is a feature in several psychopathologies, such as psychosis. A formal understanding information sampling may therefore clarify the computational anatomy of psychopathology. In this theoretical paper, we consider evidence accumulation in terms of active (Bayesian) inference using a generic model of Markov decision processes. Here, agents are equipped with beliefs about their own behaviour – in this case, that they will make informed decisions. Normative decision-making is then modelled using variational Bayes to minimise surprise about choice outcomes. Under this scheme, different facets of belief updating map naturally onto the functional anatomy of the brain (at least at a heuristic level). Of particular interest is the key role played by the expected precision of beliefs about control, which we have previously suggested may be encoded by dopaminergic neurons in the midbrain. We show that manipulating expected precision strongly affects how much information an agent characteristically samples, and thus provides a possible link between impulsivity and dopaminergic dysfunction. Our study therefore represents a step towards understanding evidence accumulation in terms of neurobiologically plausible Bayesian inference, and may cast light on why this process is disordered in psychopathology.